ResPredAI ========= Antimicrobial Resistance Prediction via AI ------------------------------------------- .. image:: https://img.shields.io/badge/python-3.9%2B-blue.svg :target: https://www.python.org/downloads/ :alt: Python Version .. image:: https://github.com/EttoreRocchi/ResPredAI/actions/workflows/ci.yaml/badge.svg :alt: CI .. image:: https://img.shields.io/badge/License-MIT-yellow.svg :target: https://opensource.org/licenses/MIT :alt: License: MIT .. image:: assets/logo_ResPredAI.png :alt: ResPredAI Logo :width: 350 :align: center ResPredAI is a machine learning pipeline for predicting antimicrobial resistance. It implements the methodology described in: Bonazzetti, C., Rocchi, E., Toschi, A. *et al.* Artificial Intelligence model to predict resistances in Gram-negative bloodstream infections. *npj Digit. Med.* **8**, 319 (2025). https://doi.org/10.1038/s41746-025-01696-x Features -------- - **Nested Cross-Validation**: Rigorous evaluation with inner CV for hyperparameter tuning and outer CV for performance estimation - **8 ML Models**: Support for Logistic Regression, Random Forest, XGBoost, CatBoost, MLP, TabPFN, and SVM variants - **Threshold Optimization**: Optional threshold tuning using Youden's J statistic, F1, F2, or cost-sensitive objectives - **Probability Calibration**: Post-hoc calibration with sigmoid (Platt) or isotonic methods - **Calibration Diagnostics**: Brier Score, ECE, MCE metrics with reliability curves - **Group-Aware CV**: Prevent data leakage with stratified group k-fold - **Feature Importance**: Native importance extraction with SHAP fallback - **Model Persistence**: Save and resume training, cross-dataset validation Quick Links ----------- - :doc:`getting-started/installation` - :doc:`getting-started/quickstart` - :doc:`cli-reference/index` - :doc:`changelog` Output Structure ---------------- The pipeline generates: - **HTML report**: Comprehensive self-contained report with metrics, confusion matrices, and configuration summary - **Confusion matrices**: PNG files with heatmaps showing model performance - **Detailed metrics**: CSV files with precision, recall, F1, MCC, balanced accuracy, AUROC and 95% confidence intervals - **Trained models**: Saved models for resumption and feature importance extraction - **Feature importance**: Plots and CSV files showing feature importance/coefficients :: output_folder/ ├── models/ # Trained models (if enabled) │ └── {Model}_{Target}_models.joblib ├── metrics/ # Detailed metrics │ ├── {target}/ │ │ ├── {model}_metrics_detailed.csv # Metrics with 95% CI │ │ └── summary.csv # Summary for this target │ └── summary_all.csv # Global summary ├── confusion_matrices/ # Confusion matrix heatmaps │ └── Confusion_matrix_{model}_{target}.png ├── calibration/ # Calibration diagnostics │ └── {target}/{model}_reliability_curve.png ├── feature_importance/ # Feature importance (optional) │ └── {target}/{model}_feature_importance.csv ├── report.html # Comprehensive HTML report ├── reproducibility.json # Reproducibility manifest └── respredai.log # Execution log Citation -------- If you use ResPredAI in your research, please cite: .. code-block:: bibtex @article{Bonazzetti2025, author = {Bonazzetti, Cecilia and Rocchi, Ettore and Toschi, Alice and others}, title = {Artificial Intelligence model to predict resistances in Gram-negative bloodstream infections}, journal = {npj Digital Medicine}, volume = {8}, pages = {319}, year = {2025}, doi = {10.1038/s41746-025-01696-x} } Funding ------- This research was supported by EU funding within the NextGenerationEU-MUR PNRR Extended Partnership initiative on Emerging Infectious Diseases (Project no. PE00000007, INF-ACT). License ------- This project is licensed under the MIT License. .. toctree:: :maxdepth: 2 :caption: Contents: :hidden: getting-started/installation getting-started/quickstart cli-reference/index changelog contributing