Quick Start =========== This guide will help you get started with ResPredAI in just a few minutes. Step 1: Create a Configuration File ------------------------------------ Generate a template configuration file: .. code-block:: bash respredai create-config my_config.ini Step 2: Edit the Configuration ------------------------------ Open ``my_config.ini`` and customize it for your data: .. code-block:: ini [Data] data_path = ./data/my_data.csv targets = Target1,Target2 continuous_features = Feature1,Feature2,Feature3 # group_column = PatientID # Optional: prevents data leakage [Pipeline] models = LR,RF,XGB,CatBoost outer_folds = 5 inner_folds = 3 calibrate_threshold = false threshold_method = auto calibrate_probabilities = false probability_calibration_method = sigmoid [Reproducibility] seed = 42 [Log] verbosity = 1 log_basename = respredai.log [Resources] n_jobs = -1 [ModelSaving] enable = true compression = 3 [Imputation] method = none strategy = mean n_neighbors = 5 estimator = bayesian_ridge [Output] out_folder = ./output/ Configuration Sections ~~~~~~~~~~~~~~~~~~~~~~ .. list-table:: :header-rows: 1 :widths: 30 70 * - Section - Description * - ``[Data]`` - Input data path, target columns, feature types * - ``[Pipeline]`` - Models to train, CV folds, threshold optimization and probability calibration * - ``[Reproducibility]`` - Random seed for reproducibility * - ``[Log]`` - Logging verbosity and file name * - ``[Resources]`` - Parallel processing settings * - ``[ModelSaving]`` - Model persistence options * - ``[Imputation]`` - Missing data imputation settings * - ``[Output]`` - Output directory path Step 3: Validate Configuration (Optional) ----------------------------------------- Check that your configuration is valid before running: .. code-block:: bash respredai validate-config my_config.ini --check-data Step 4: Run the Pipeline ------------------------ Execute the nested cross-validation pipeline: .. code-block:: bash respredai run --config my_config.ini Step 5: Explore Results ----------------------- After the pipeline completes, check your output folder: - ``report.html`` - Comprehensive HTML report with all results - ``metrics/`` - Performance metrics with 95% confidence intervals - ``confusion_matrices/`` - Visualization of model performance - ``models/`` - Saved models for feature importance extraction Step 6: Extract Feature Importance (Optional) --------------------------------------------- Analyze which features are most important: .. code-block:: bash respredai feature-importance --output ./output --model LR --target Target1 Available Models ---------------- .. list-table:: :header-rows: 1 :widths: 20 80 * - Code - Model * - ``LR`` - Logistic Regression * - ``RF`` - Random Forest * - ``XGB`` - XGBoost * - ``CatBoost`` - CatBoost * - ``MLP`` - Neural Network * - ``TabPFN`` - TabPFN * - ``RBF_SVC`` - RBF SVM * - ``Linear_SVC`` - Linear SVM * - ``KNN`` - K-Nearest Neighbors Next Steps ---------- - Read the :doc:`../cli-reference/index` for detailed command options - Check the :doc:`../cli-reference/run-command` for advanced configuration